
Torus amplitudes and modular invariance

Otto T.P. Schmidt

May 23, 2022

Abstract

In the study of string interactions, the ultimate objective will be the as-
signment of a probability to a certain process and the prediction of a physical
cross section.
However, most string diagrams are not mere tree diagrams with a direct con-
nection of incoming and outgoing strings. In order to obtain a more precise
description of an interaction, one needs to consider intermediate processes
such as self-energy corrections.
This report sets out to describe the simplest form of a self-energy correction,
namely a one-loop closed string diagram. We therefore consider the simplest
Riemann surface with non-zero genus, the torus, and show how it can be
parameterised via the moduli space.
Following this analysis, the partition function for a single free compactified
boson will be calculated and then generalised for the light-cone gauge with
24 transverse dimensions. As a result, we can obtain the amplitude for a
one-loop interaction and show its modular invariance.
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1 Introduction

The world-sheets of strings are two dimensional Riemann surfaces. Any interac-
tion with a fixed number of in- and outgoing strings can be described in different
levels of complexity. More complex interactions correspond to higher orders in the
string perturbation expansion.
This work will focus on the simplest form of perturbation to a four closed string
interaction, the one-loop interaction, for which the Riemann surface is a torus, i.e.
a world-sheet with genus g = 1.

If a measure of the interaction probability is to be obtained, we need to find a
way to parameterise different processes with the topology of a torus. This will be
done by introducing the concept of a moduli space.
The analysis of the moduli space will produce a fundamental domain, which in-
corporates all possible parameterisations for a one-loop closed string interaction.
More precisely, it contains all inequivalent forms of an interaction.
We will see that the moduli space is constructed by applying two conformal trans-
formation or identifications to the upper half plane, which results in its segmen-
tation into equivalent domains. This will also demonstrate that string theory is
devoid of ultraviolet divergences.

The amplitude of a closed string interaction will be an integral over the mod-
uli space, for which the integrand is the partition function. The partition function
will count the number of states of the torus for a specific parameter of the moduli
space.
Once both moduli space and partition function are determined, the amplitude can
be postulated and its invariance under modular transformations can be shown.
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2 The moduli space of tori

In the analysis of a one-loop closed string interaction we consider a toroidal Rie-
mann surface. It is important to establish that the world-sheet is indeed a Riemann
surface since the later notion of equivalent tori is derived from the equivalence of
two Riemann surfaces via a conformal transformation.
After constructing the torus from a simple Riemann surface via conformal trans-
formations, we will see that these conformal transformations restrict the set of
inequivalent parameters.

2.1 One-loop open strings

Before approaching the moduli space of tori, consider a one-loop open string with
light-cone momentum p+ and world-sheet coordinates (τ, σ). This will serve as an
intuitive analogon.

In light-cone gauge we have (β = 2 for open strings):

X+ = 2α′p+τ and p+σ = π

∫ σ

0

dσ̃Pτ+(τ, σ̃) (1)

By choosing β = 1
α′p+

we see that σ ∈ [0, 2π
β
] = [0, 2πα′p+].

Therefore the light-cone diagram is:

Figure 1: One-loop open string diagram with light-cone momentum p+.[3]
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For fixed external momentum p+ there are two parameters by which we can
uniquely describe an interaction:

1. Interaction time ∆T ∈ (0,∞)

2. Intermediate string momentum p+1 ∈ (0, p+)

The class of Riemann surfaces of this process has two moduli. This however is not
yet a statement about the moduli space.

To obtain the moduli space a canonical representation of the world-sheet dia-
gram must be established. We can find a canonical representation by applying
conformal transformations to the world-sheet diagram with coordinate ω = τ + iσ.
These are shown in fig. 2a, 2b and 3.

The first transformation is an exponential map and the second a linear fractional
transformation (LFT). The mapping from fig.2b to 3 is generally possible with a
conformal transformation if the image is topologically an annulus.[3]
This process yields a canonical representation with a modulus r.

(a) Exponential map: z = exp[ w
2α′p+

].[3] (b) LFT: η = 1+iz
1−iz .[3]

Figure 3: Canonical annulus with modulus r.[3]
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2.2 Rectangular tori

As outlined before, we can only find the moduli space of a string interaction if the
corresponding world-sheet diagram is a Riemann surface.
It is therefore essential for our analysis to show first that the torus, i.e. the world-
sheet diagram of a one-loop closed string interaction, can be mapped conformally
to a Riemann surface.

Consider a rectangular region of C as shown in fig. 4. We can now apply the
analytic identifications z ∼ z + L1 and z ∼ z + iL2.
Here z ∼ z + L1 corresponds, intuitively speaking, to gluing the vertical edges to-
gether. Both ends of the resulting cylinder can then be identified via z ∼ z + iL2.
This is shown in fig. 5a and 5b.
These conformal transformations yield a torus. And since the torus is now linked
via conformal transformation to a Riemann surface we can conclude that the torus
is a Riemann surface as well.

Figure 4: Region in C.[3]

(a) First identification z ∼ z + L1.[3]

(b) Second identification z ∼ z + iL2.[3]
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Although it seems that the region of the rectangular torus is defined by two
parameters, i.e. the torus has two moduli, we can scale the identifications appro-
priately by choosing z′ = z

L1
. We thereby obtain:

z′ ∼ z′ + 1 and z′ ∼ z′ + iT with T =
L2

L1

(2)

This shows that the rectangular torus can be parameterised by one parameter
alone.
However, so far this has only established the moduli itself and not the moduli
space. Again, we can apply a series of conformal transformations. We choose a
normalised complex coordinate w = 1 + iT :

1. w̃ = −iw

2. η = w̃
T

3. z = η + 2 i
T
= − iw

T
+ 2 i

T
= 1 + i

T

Via these conformal transformations it becomes evident that the two Riemann sur-
faces with parameter T and 1

T
are equivalent and hence tori with these parameters

corresponds to equivalent one-loop interactions.

This has implications for the occurrence of ultraviolet divergences in string theory.
For T −→ 0 we consider short closed string interactions. For these cases the torus
describes an infinitely fast self-interaction with infinite energies. This would then
lead to ultraviolet divergences.
By the identification T ∼ 1

T
we can see that the problematic values of T , i.e. those

leading to ultraviolet divergences, can also be interpreted differently, namely as
long closed string interactions.
This leads to the conclusion that the range of values for the torus parameter T
has to be split: if values T ∈ [1,∞) are included, the values T ∈ (0, 1) should not
be.
Here we choose the canonical interval T ∈ [1,∞) which only includes "long" tori.
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2.3 General tori

Rectangular tori represent only a subset of all conformally inequivalent tori. A
more general class of tori can be constructed.
For that we choose two complex numbers ω1, ω2 with Im(ω2

ω1
) > 0. A torus can

again be obtained via the identifications z ∼ z + ω1 and z ∼ z + ω2.
Applying an appropriate scaling we obtain:

z ∼ z + 1 and z ∼ z + τ with τ =
ω2

ω1

(3)

The newly introduced parameter τ is the modulus for general tori. The rectangu-
lar case can be obtained by setting Re(τ) = 0.
Note that until now the moduli space of a general torus is the upper half plane H.

The region in C corresponding to a general torus is depicted in fig. 6 below.

Figure 6: Region in C for a general torus.[3]

With a general torus we can consider the "twisting" of the torus. Intuitively,
if a cylinder is twisted and the end surfaces are connected, we expect a different
torus. In order to see what this intuitive notion of "twisting" implies for the moduli
space of the torus, we need to apply conformal transformations which "twist" the
torus. For this we take a canonical representation of a torus with unit length and
Re(τ) ̸= 0.
By applying z ∼ z + 1, the shaded region in fig. 7a is identified with the shaded
region if fig. 7b. We thereby obtained a rectangular region. The corresponding
torus however is not rectangular. The difference can be seen if we now apply the
identifications of the edges in order to obtain a cylinder. This is shown in fig. 8.
It is clear that the points P (equivalent by z ∼ z + τ) are not orthogonal to each
other on the cylinder.
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(a) Applying z ∼ z + 1.[3] (b) Rectangular region.[3]

Figure 8: Cylinder with non-orthogonal points P.[3]

Following the illustrations we can introduce another parameter, the twisting
angle θ. Since we considered a canonical representation of the general torus, the
circumference of the cylinder is 1. It therefore follows:

θ

2π
=

Re(τ)

1
⇐⇒ θ = 2πRe(τ) (4)

This formulation of the twisting parameter implies that τ ∼ τ + 1 is an identifi-
cation for the general torus. This follows since Re(τ+1) = Re(τ)+1 and θ ∼ θ+2π.

The identification τ ∼ τ + 1 is important since it restricts the parameter space of
τ . We can now reduce the moduli space from H without loss of generality to

S0 = {−1

2
< Re(τ) ≤ 1

2
, Im(τ) > 0} (5)
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2.4 Fundamental domain

The region S0 is a first candidate for the fundamental domain. The fundamental
domain is defined as the set containing all inequivalent tori.
The study of the rectangular torus however hints that we have to restrict this
canditate even more: for the rectangular torus we found that T ∼ 1

T
. Since τ = iT

we see that τ ∼ − 1
τ
. Indeed this is another identification leading to equivalent

tori.
There are two modular transformations so far:

1. T-modular transform: τ ∼ τ + 1

2. S-modular transform: τ ∼ − 1
τ

We can restrict ourselfs to those two transformation since the later defined modular
group is spanned by those two transformation. All other modular transformations,
i.e. group actions of the modular group, can be obtained by a suitable combination
of T- and S-modular transforms.

The S-modular transform identifies points in |τ | < 1 with points in |τ | > 1. This
restricts the candidate S0 to

F0 = {−1

2
< Re(τ) ≤ 1

2
, Im(τ) > 0, |τ | ≥ 1 and Re(τ) ≥ 0 if |τ | = 1} (6)

The candidate F0 for the fundamental domain contains three parts:

1. [−1
2
< Re(τ) ≤ 1

2
, Im(τ) > 0] is the domain S0

2. |τ | ≥ 1 incorporates that points in |τ | < 1 are identified with points in |τ | > 1

3. Re(τ) ≥ 0 if |τ | = 1

Point three needs a separate analysis: consider τ = a + ib with |τ | = 1 in S0.
Assume first that a ∈ (0, 1

2
). Then:

−1

τ
= − 1

a+ ib
= −a+ ib (7)

We can conclude that τ on the unit circle in S0 with a ∈ (0, 1
2
) can be identified

to a torus with a ∈ (−1
2
, 0). Hence F0 needs to include

Re(τ) ≥ 0 if |τ | = 1 (8)

if we want to exclude equivalent tori in the domain.
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In the construction of F0 we made an arbitrary choice, namely to consider only
|τ | ≥ 1. Although this choice was made without loss of generality, there is a subtle
motivation for it.
To see that take the torus τ = i. Via the T-modular transform we see that there
is an infinite set of equivalent tori τn outside of S0:

τn = i+ n for n ≥ 1 (9)

Applying the S-modular transform yields:

− 1

τn
= − n

n2 + 1
+

i

n2 + 1
(10)

These tori have Re(− 1
τn
) ∈ [−1

2
, 0) and | − 1

τn
| < 1. Therefore τn ∈ S0 − F0. We

can conclude that S0 −F0 contains infinitely many copies of τ = i. It is therefore
natural to exclude this region. Hence the choice for |τ | ≥ 1.

The domain F0 is illustrated in fig. 9

Figure 9: Fundamental domain F0.[3]

It is important to stress that this fundamental domain is merely a choice for the
set of inequivalent tori. In fact, there are infinitely many fundamental domains,
i.e. infinitely many representations of the moduli space. Since T- and S-modular
transforms do not change a torus τ but only give an equivalent representation,
the infinite set of fundamental domains arises by applying combinations of T- and
S-modular transforms to F0. This can be seen in fig. 10.
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Figure 10: Fundamental domains for T- and S-modular transforms.

As for now, the notion modular has so far been used without justification. It is
derived from the modular group PSL(2,Z), which will be derived below.
Consider a general fractional linear transformation g ∈ G, with G a set of trans-
formations, such that:

gτ =
aτ + b

cτ + d
, Im(gτ) =

Im(τ)

|cτ + d|2
(11)

with a, b, c, d ∈ Z and ad− bc = 1.
Equivalently we can use a matrix representation:

[g] =

(
a b
c d

)
, det[g] = 1 (12)

The group elements g ∈ G satisfy the group homomorphism ϕ : G → G, [g1g2] 7→
[g1][g2]. This can be easily verified using the matrix representations.
The set of transformations G is then called the modular group PSL(2,Z).

We can now reinterpret the known T- and S-modular transformations via the
matrix notation:

[T ] =
(
1 1
0 1

)
and [S] =

(
0 −1
1 0

)
(13)
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In order to substantiate the claim that F0 is the fundemental domain, we can
show that for all τ ∈ H there exists g ∈ G′ such that gτ ∈ F0. Here G′ is the set
of all combinations of T- and S-modular transforms.
We can go about this in three steps:

1. Show that for each τ ∈ H there exists a g ∈ G′ such that Im(gτ) is largest.

2. Show that τ ′ = T ngτ ∈ S0 really is in F̄0.

3. Show that τ ∈ F̄0 can be send to τ ∈ F0 via T- or S-transforms.

1.: It is equivalent to show that |cτ + d| is smallest since Im(gτ) = Im(τ)
|cτ+d|2 for a

transformation g ∈ G′. For that we notice that (c, d) ∈ Z2 span a lattice. So for a
fixed τ ∈ H there exists only a finite number of points in the lattice such that for
α > 0 we have |cτ + d| < α. However, the transformation g is not unique.

2.: Consider a torus τ ′ = T ngτ with n such that τ ′ ∈ S0. We know that
Im(τ ′) = Im(gτ) since c = 0 and d = 1 for the T-modular transform.
For any g′ ∈ G′ we also know from 1. that Im(g′τ ′) ≤ Im(τ ′).
Now assume that τ ′ ̸∈ F̄0. This implies |τ ′| < 1. Suppose g′ = S. We then have:

Im(Sτ ′) =
Im(τ ′)

|τ ′|2
> Im(τ ′) (14)

This is a contradiction since Im(τ ′) should be largest. Hence we can conclude
τ ∈ F̄0.

3.: If τ ∈ F̄0 is already in F0 nothing remains to be shown. If τ however lies
on the boundary of F0 we can simply apply a T- or S-modular transform once to
send τ to F0.
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3 Torus partition function

This section will establish the partition function of the torus. The partition func-
tion will serve as the integrand of the later postulated torus amplitude.
It will be shown how the partition function behaves under modular transforms and
that it is indeed modular invariant.

3.1 Single free boson

First we consider the case of a single free boson with a compactified coordinate
X ∼ X + 2πr. Hence the boundary condidtions read:

X(z + τ, z̄ + τ̄) = X(z, z̄) + 2πrn′

X(z + 1, z̄ + 1) = X(z, z̄) + 2πrn

with n, n′ ∈ Z.
The solution to the classical equation of motion ∂∂̄X = 0 is:

Xn,n′
(z, z̄) = 2πr

1

2iτ2
[n′(z − z̄) + n(τ z̄ − τ̄ z)] (15)

The action is defined as
S =

1

2π

∫
∂X ¯∂X (16)

In a path integral formalism, the partition function or propagator kernel is then
obtained as [2]: ∫

e−S = 2πr

√
2τ2
π

1

det′
1
2 2

∑
n,n′∈Z

e−S[Xn,n′
]

=
1

ηη̄

∑
n,m∈Z

e2πiτ
1
2
( p
2
+w)2e−2πiτ̄ 1

2
( p
2
−w)2

where τ = τ1 + iτ2, p = m
r

and w = nr.
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The Dedekind eta function η(τ) = q
1
24

∏∞
n=1(1 − qn) with q = e2πiτ appears

since:

det′2 =
∏

{m,n}≠{0,0}

π2

τ 22
(n−mτ)(n−mτ̄)

=
π2

τ 22
(2π)2

∏
m>0,n∈Z

(n−mτ)(n+mτ)(n+ τ̄)(n− τ̄)

= 4τ 22 (qq̄)
1
12

∏
m>0

(1− qm)2(1− q̄m)2

= 4τ 22 η
2η̄2

with 2 = −∂∂̄ and det′ the regularised determinant (omitting the case m = n = 0).

So the partition function for the free boson compactified on a circle with radius r
reads:

Zr(τ, τ̄) =

∫
e−S =

1

|η|2
∑
m,n

q
1
2
p2L q̄

1
2
p2R (17)

where
pL =

m

2r
+ nr and pR =

m

2r
− nr (18)

In order to understand this result we need to consider the Hilbert space of the
single free boson on a compactified world-sheet as a product Hilbert space:

H = Hosc. ⊗
⊕
p,w

Hp,w (19)

where Hosc. is the bosonic Fock space generated by the mode operators α−n and⊕
p,w Hp,w is the Hilbert space for different winding and momentum states, i.e. the

compactification states.
We can expect that the partition function splits into an oscillation part and a part
for the compactification numbers p, w in a similar way:

Z = Zosc. ×
∑
p,w

Zp,w (20)
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It is therefore natural to interpret the partition function in eq. 17 in the
following way:

Zosc. =
1

|η|2

Zp,w = q
1
2
p2L q̄

1
2
p2R

3.2 Modular invariance of the partition function

The modular invariance of the partition function is the essential property for the
modular invariance of the amplitude.
To fully understand the behaviour of the partition function under T- or S-modular
transformations, we need to understand the behaviour of its components.

The Dedekind eta function is a modular form with weight 1
2

and transforms under
T- or S-modular transformations like

η(τ + 1) = e2πi(τ+1) 1
24

∞∏
n=1

(1− qne2πin)

= ei
π
12η(τ)

η(−1

τ
) =

√
−iτη(τ)

Let us first consider the whole partition function under T-modular transforma-
tions:

Zr(τ + 1, τ̄ + 1) =
1

|ei π
12η|2

∑
m,n

q
1
2
(m
2r

+nr)2e2πi
1
2
(m
2r

+nr)2 q̄
1
2
(m
2r

−nr)2e−2πi 1
2
(m
2r

−nr)2

=
1

|η|2
∑
m,n

q
1
2
(m
2r

+nr)2 q̄
1
2
(m
2r

−nr)2e2πimn

= Zr(τ, τ̄)

We can conclude T-modular invariance.
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The behavior under S-modular transform is more difficult. Its is necessary to
first introduce a mathematical method, the Poisson resummation.
Let f : R → C be a Schwartz function f ∈ S(R). Then:∑

n∈Z

f(n) =
∑
n∈Z

f̂(n) (21)

Consider functions of the form e−πaq2 . Then:∑
q∈Σ

e−πaq2 =
1

a1/2

∑
p∈Σ∗

e−
π
a
p2 (22)

where Σ is a lattice over Z. We can therefore assume that it is self-dual, i.e.
Σ∗ = Σ.
We then have for the partition function:

Zr(−
1

τ
,−1

τ̄
) =

1

|τ ||η|2
∑
pL∈Σ

e−π( 1
−iτ

)p2L
∑
pR∈Σ̄

e−π( 1
iτ̄

)p2R

=
1

|τ ||η|2
∑

pL∈Σ∗

√
−iτeiπτp

2
L

∑
pR∈Σ̄∗

√
iτ̄ e−iπτ̄p2R

=
1

|τ ||η|2
|τ |

∑
pL∈Σ,pR∈Σ̄

q
1
2
p2L q̄

1
2
p2R

= Zr(τ, τ̄)

This concludes S-modular invariance for the partiton function.

Before approaching a different derivation for the partition function, let us con-
sider the path integral result from before and observe the behaviour for r → ∞.
This can be seen as the decompactification of the compactified bosonic string.
If we do so, the momenta pL, pR become continuous pL = pR = m

2r
. The contri-

bution from winding w = nr leads to a fast oscillating factor in the integral and
hence vanishes.
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We have:

Zr(τ, τ̄) =
1

|η|2

∫ ∞

−∞
dkq

1
2
k2 q̄

1
2
k2

=
1

|η|2

∫ ∞

−∞
dke2πi

1
2
k2τe−2πi 1

2
k2τ̄

=
1

|η|2

∫ ∞

−∞
dke2πi

1
2
k22i Im{τ}

=
1

|η|2

∫ ∞

−∞
dke−2πk2 Im{τ}

∝ 1

|η|2
1

Im(τ)
1
2

With the interpretation of eq. 20 we can see that

Zosc. =
1

|η|2

Zp,w =
1

Im(τ)
1
2

3.3 Partition function via state trace

An alternative approach to obtain the partition function is the state trace.

The compactification states are counted via the results we obtained from the path
integral. No trace is involved.∑

pL∈Σ,pR∈Σ̄

q
1
2
p2L q̄

1
2
p2R

r → ∞−−−−→
∫ ∞

−∞
dkq

1
2
k2 q̄

1
2
k2 ∝ 1

Im(τ)
1
2

(23)

A possible way of counting the oscillation states however does involve the state
trace and the zero mode Virasoro operators L0, L̄0:∑

Φ

⟨Φ| e2πiτL0e−2πiτ̄ L̄0 |Φ⟩ = Tr
(
qL0 q̄L0

)
(24)
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The form of the propagator, i.e. qL0 q̄L0 , is motivated by the two following
observations:

1.

Tr
(
qL0

)
∝ Tr

(
q
∑∞

k=1 kN̂
)

=
∞∏
k=1

Tr
(
qkN̂

)
=

∞∏
k=1

∑
n≥0

⟨n| qkN̂ |n⟩

=
∞∏
k=1

∑
n≥0

(qk)n

=
∞∏
k=1

1

1− qk

This is the partition function of a boson from the Bose-Einstein distribution.
With a correction factor we get the eta function:

Tr
(
qL0− c

24

)
= q−

1
24

∞∏
n=1

1

1− qn
=

1

η(τ)
(25)

2.

qL0 q̄L̄0 = e2πi(τ1+iτ2)L0e−2πi(τ1−iτ2)L̄0

= e2πiτ1(L0−L̄0)e−2πτ2(L0+L̄0)

Here L0− L̄0 is the momentum P which generates translation in σ. Similarly
L0 + L̄0 is the Hamiltonian H which generates τ translation.
The propagator has then the interpretation of a τ and σ sweep.

Equation 24 therefore evaluates as

Tr
(
qL0 q̄L0

)
=

1

|η(τ)|2
(26)

and together with eq. 23 the partition function reads (as in the the case for
r → ∞):

Z(τ, τ̄)1d =
1

|η(τ)|2
1

(Im τ)
1
2

(27)
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Generalised for the 24 transverse dimensions in light-cone gauge we then obtain:

Z(τ, τ̄)l.c. = (
1

|η(τ)|2
1

(Im τ)
1
2

)24 =
1

|η(τ)|48
1

(Im τ)12
(28)

This is the form we will use in the amplitude.
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4 Modular invariance of the torus amplitude

The correct one-loop vacuum amplitude reads [1]:

Ag=1
0 ∝

∫
F0

d2τ

4(Im(τ))2
Z(τ, τ̄) (29)

This amplitude carries the correct physical intuition: each possible form of a one-
loop interaction is parametrised by τ . To get a probability measure for a process
we therefore need to weight every τ ∈ F0 with the partition function Z(τ, τ̄).

We can rewrite the amplitude using the light-cone Hamiltonian and momentum
(with τ = τ1 + iτ2) [1]:

Ag=1
0 ∝

∫
F0

d2τ

16π2α′τ 22

∫
d24p

(2π)24
Tr

(
e−2πτ2Hl.c.e−2πiτ1Pl.c.

)
(30)

This form yields an interpretation of the amplitude in terms of the light-cone
Hamiltonian and momentum.
Consider τ1 = 0. In this case τ2 plays the role of a Euclidean time. We know that
τ1 = 0 corresponds to a rectangular torus.
The partition function counts the number of states propagating around the torus
in τ2 direction and weights them with e−2πτ2Hl.c. .

Now consider a cylinder with length τ2 and τ1 ̸= 0 whose ends are identified.
We can twist the ends by the twist angle θ = 2πτ1. This twist is then induced by
Pl.c..

To show that the form in eq. 29 is modular invariant, we need to establish mod-
ular invariance for the partition function Z, the integration domain F0 and the
measure d2τ

4(Im(τ))2
.

The modular invariance of the partition function has been shown in the previous
section. Furthermore we know that the integration domain is by definition mod-
ular invariant, the fundamental domain does not change under T- or S-modular
transformations.
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The remaining thing is to show modular invariance of the measure:

d(gτ) = [
a(cτ + d)− (aτ + b)c

(cτ + d)2
]dτ

= [
ad− bc

(cτ + d)2
]dτ

= |cτ + d|−2dτ

Im(gτ) = |cτ + d|−2 Im(τ)

Therefore the measure transforms like:

d2(gτ)

Im(gτ)2
=

|cτ + d|−4d2τ

(|cτ + d|−2 Im(τ))2
=

d2τ

Im(τ)2
(31)

This shows that the measure is also modular invariant and we can conclude the
modular invariance of the amplitude for a one-loop closed string interaction.
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5 Conclusion

This report set out to derive a form for the amplitude of the one-loop closed string
interaction. It was established how the world-sheet diagram of such a process, the
torus, defines the interaction and how it is connected to a simple Riemann surface.
The analysis of the parameter space produced a set of parameters τ which corre-
spond to inequivalent interactions, i.e. different tori. We have called this set the
fundamental domain or the moduli space of the torus. To define the moduli space
properly we have introduced the modular group PSL(2,Z).

In a next step the partition function was postulated and motivated. This function
is most important to characterise the states over which the amplitude will inte-
grate. It therefore also needs to be modular invariant.
Lastly, the amplitude was defined and its modular invariance was shown. This
leaves us with a tool to calculate the probabilites of different one-loop interactions.

However, to fully understand scattering or interaction events, more orders of per-
turbation need to be included. Here we have focused only on the first order. This
study will then include world-sheets with multiple geni and higher dimensional
moduli spaces.
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